By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information.

6 training data techniques for self-driving cars

August 31, 2022

What is training data?

Training data also called training dataset, learning set or training set is the initial set of data used to train machine learning algorithms. Machine learning models use this data to complete specific tasks or make accurate predictions, create and refine their rules as well as understand the features of the data and also adjust itself to perform better.

6 Types of training data techniques for self-driving cars 

Bounding Box annotation for Object Detection

A bounding box is an imaginary rectangular box used for object detection and localisation. They contain  coordinates which give information about an object's location in the image or video. It is most suitable for uniformly shaped objects and those which do not overlap.

For automated vehicles, it helps in detecting such objects as traffic signs, lanes and potholes. Automated vehicles possess object detectors which help in finding and localising the objects in time.In addition, it helps capture different standing objects and moving vehicles on the road.   

3D Cuboids to Detect Objects Dimensions

3D cuboid annotation is used to recognise all three dimensions of an object through the use of computer vision. It is used to detect the accurate dimensions of the object in focus.  Automated vehicles make use of it to visualise the depth of objects they detect.

Semantic Segmentation to Classify Objects for Self-driving Cars

Semantic segmentation is the digital technique of dividing or partitioning an image into various parts or regions, taking into account the image's pixels. With automated vehicles,annotated objects are shaded to be easily recognised through computer vision.

3D Point Cloud Annotation for LiDARs Detections

This type of data training allows for precise  object detection with the use of LiDAR sensors.Objects which are  up to 1 cm are annotated or labelled at every point  annotated with 3D boxes. It makes objects recognisable,whether indoor or outdoor.

For automated vehicles, it is used for distinguishing and classifying lanes on roads with the use of 3D point cloud maps.

Polygon Annotation to Detect Irregular Shaped Objects for self-driving cars

Polygon annotation automates the detection of  complex-shaped objects which are in high demand for accuracy.  It draws precise polygons around objects with odd shapes. 

It helps automated vehicles to recognize visible objects such as motorcycles,bicycles or cars on the street.  on the streets.

Polyline Annotation for Lane Detection 

This kind of data training makes streets and highways easily recognised for accurate road movements. It makes use of computer vision to annotate road surfaces and lanes(whether single, double or broken, painted ones) for easy detection by automated vehicles.

You might also like
this new related posts

Want to find out more
about AI as well as our Data Labeling tools and services?

Isahit has a wide range of solutions and tools that will help you train your algorithms. Click below to learn more!