By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information.

Why should we add noise to image for machine Learning?

August 4, 2022

What is noise in Machine Learning?

In machine learning noise refers to data errors or data which carry  high proportions of meaningless information. Noise also refers to data that is not clearly understood by the user. It is sometimes called corrupt data.

Types of noise in Machine Learning 

Attribute noise (Predictive Attributes)

Attribute noise occurs when one or more attributes is deviated from the general distribution of other attributes. The larger the deviation is for one or more observations the more evidence there is that there is noise.

Class noise(Target Attribute)

Glass noise refers to the ratio of contradictory data entries to the actual number of entries in the data being analysed. It refers to the number of duplicate entries which have been assigned different class labels.

Why do we add noise to images?

Noise is added to increase the variability of images. This is in order to train the machine models to avoid overfitting 

When noise is added to images it is able to manipulate the appearance of an image to seem of higher quality than it actually is. The optical illusion here is able to attract a physician or a human gaze bias .

Noise allows room for algorithm performance to be tested. This in a way helps to avoid overgeneralization.

What is Machine Learning?

It is a branch of artificial intelligence which trains computers to think similarly as humans,with minimal human effort. This is usually done through data exploration and pattern identification.

What are the categories of machine learning?


Supervised machine learning uses labelled datasets to train algorithms. This is for data classification or the accurate prediction of outcomes.


Unsupervised machine learning makes use of underlying patterns stemming  from unlabeled datasets which have no references to labelled prediction.


Semi supervised machine learning fuse is a large portion of unlabeled datasets in a small portion of labelled datasets.


Reinforcement is a form of machine learning which rewards a desired behaviour or action and penalizes undesired ways. It makes machine learning models who make a sequence of decisions.

What is an image noise?

It is a form of optical illusion added to photos.It could be in the form of its brightness or colour details.

Types of noise in images


It is the act of randomly varying the brightness or colour details of an image. This is done with image sensors of a scanner or a digital camera.

Fixed pattern 

But this type of noise patterns become noticeable on digital imaging sensors where they are longer exposure shots and certain pixels are prone to given more illuminating intensities beyond the average.


This kind of noise is camera dependent as it is introduced by the camera after reading data from its digital sensor. It is most visible when there is an excessive brightness of images.

Usefulness of image noise in Machine Learning

It helps in holding models accountable. Usually, learning models are only able to predict the tuning data but unable to do so with the wider world. Training models expected to learn the patterns of the training data rather than memorizing them. This is where the addition of noise to an image plays a major role.

Also it helps to prevent unintended results. Noises are the two images because training models exhibit a higher rigidity level in their reasoning capacity. The noise adds to the flexibility of the model helping to prevent overly generalized results.

Noise in images ensures strategic variations of results on training data. This is owing to the fact that it is added to all images before a training model learns to make inference

You might also like
this new related posts

Want to find out more
about AI as well as our Data Labeling tools and services?

Isahit has a wide range of solutions and tools that will help you train your algorithms. Click below to learn more!